A Visual Design Toolset for Drag-and-drop
Smart Space Configuration

Darren Carlson*, Matthias Mt')gerleT, Max Pagel*, Shivam Verma*, and David S. Rosenblum*
*Felicitous Computing Institute, National University of Singapore
{carlson, pagel, shivam, david} @comp.nus.edu.sg
TInstitute for Visualization and Interactive Systems, University of Stuttgart
matthias.moegerle @studi.informatik.uni-stuttgart.de

I. BACKGROUND

The number of networked smart devices available in
everyday Internet of Things (IoT) environments is rapidly
increasing; however, many current devices adopt mutually
incompatible networks, protocols, and application program-
ming interfaces (APIs). For example, devices like the Sphero
Robotic ball and Parrot AR Drone helicopter both provide
dedicated controller apps, but remain inherently incompatible.
The Sphero supports sensor data streaming of its inertial mea-
surement unit (IMU) over a Bluetooth connection, which can
be used to determine the current orientation of the robot using
a proprietary API. The AR Drone supports data connectivity
over WiFi and accepts flight control commands that can be
used to remotely pilot the drone. A grasped Sphero device
could theoretically be used as an intuitive flight controller
for the drone (by feeding its streaming IMU data into the
drone’s flight control API); however, such interactions are not
inherently supported by the devices.

A. Ambient Dynamix

To address the network, protocol and API heterogeneity
challenges introduced above, we developed Ambient Dynamix
(Dynamix for short) [1], a plug-and-play middleware frame-
work that enables mobile apps and Web apps to sense the
user’s context (e.g., location, identity, activity) and perform
fluid smart device interactions through plug-ins that can be
dynamically installed into the user’s Android-based mobile
device (e.g., smartphone or tablet) on-demand. Dynamix runs
as lightweight background service, leveraging the user’s mo-
bile device itself as a sensing, processing and communications
platform. Dynamix automatically discovers, downloads and
installs the plug-ins needed for a given sensing or control
task. When the user changes environments, new or updated
plug-ins can be deployed to the device at runtime, without
the need to restart the framework. Dynamix comes with a
growing collection of ready-made plug-ins and provides open
software development kits (SDKs) and a scalable repository
architecture, which enable 3rd party developers to quickly
create and share new plug-in types with the community.

B. The Ambient Control library

To enable dynamic “remixing” of encountered IoT re-
sources, we developed the Ambient Control (AC) library for
Dynamix [2], which aims to simplify the ad-hoc discovery,
selection and integration of smart devices in highly heteroge-
neous environments. The AC library defines a set of control

commands that can be associated with Dynamix plug-ins
as a mechanism for unifying their interaction semantics and
associated data. It also includes a Smart Wiring feature that
optimally matches the inputs and outputs of the plug-ins in a
given control graph according to priority values. The library
supports 1-to-n connections that involve 1 receiver and any
number of controllers. We call such a configuration a control
graph, since it consists of nodes (plug-ins) and directed control
edges between nodes, over which certain types of controls are
exchanged. The library coordinates requested control graphs by
managing required plug-in installations via Dynamix, handling
the setup handshake process between plug-ins and managing
full duplex communication channels between controllers and a
receiver. Plug-in control profiles are stored inside a Dynamix
web service, which offers a REST interface for configurable,
query-based access.

II. AMBIENT FLOW DEMONSTRATION

Although manual control graph creation works well in
experimental scenarios, configuring real-world environments
requires addressing multiple interaction patterns and a larger
number of devices, which can quickly become complex when
writing configurations by hand [3]. To address this complexity,
we devised a smart space configuration approach, called Ambi-
ent Flow [4], which enables non-programmers to create control
graphs visually, and then load them into a paired Dynamix-
based device for realization. This demonstration showcases the
Ambient Flow prototype shown in Figure 1.

Ambient Flow I Dynamix Plug-in

Server Repositor:
Internet L — ) Y
_________________ i -------------
Router
m\ =

L)

Connection
Context Scan
Graph Deploy

Dynamix

Device — J
Connected Devices

Flow Designer
Laptop

Fig. 1. Ambient Flow prototype



The demonstrator explores techniques for representing IoT
scenarios using a flow-based programming model. Flow-based
programing [5] is a visualization technique that allows users
without coding experience to understand, create and alter pro-
grams by manipulating graphical blocks that represent program
components or functionalities. These blocks expose available
parameters and interaction possibilities, such as inputs and
outputs. Completed control graphs can be collapsed into a
single subgraph to allow for a more tidy representation. Global
inputs and outputs for a complete subgraph can be assigned,
which enables interactions between graphs or groups of smart
objects. By configuring individual blocks, and connecting the
inputs and outputs of various blocks together, a user can create
a fully functional program that solves a given task.

During the demonstration, participants use the Web-based
“Flow Designer” (running on a laptop) to visually create smart
space configurations using a drag-and-drop visual interface.
The Flow Designer was implemented by extending the open-
source Meemoo framework [6], which provides high-level
visual programming features such as block rendering, wiring
support, subgraphs, etc. To enable smart device sensing from
the browser, the Flow Designer supports remote pairing with
a remote Dynamix instance (running on an Android mobile
device) when situated in the same local network. The pairing
process operates using an out-of-band credential exchange (a
pairing token shared optically via a barcode).

Live information from the remotely paired Dynamix device
(e.g., a smartphone) is used to render discovered connected
devices in the Flow Designer as block diagrams that can be
placed on the canvas. The Flow Designer utilizes a REST
interface provided by the Ambient Flow Server (AFS) to obtain
high-level input and output data-types for each smart device
detected in the environment. Connections between blocks are
made by dragging virtual “wires” between device outputs and
inputs. The interface guides users when creating connections
by graying out invalid targets and by adding protocol transla-
tors as required, as shown in Figure 2.

HeadingToColorTranslater

Input | Output

Output

hueplugin

r (SENSOR_ACC)
R_TOGGLE)
Pitch Yaw Roll (SENSOR_IMU)

Gyroscope (SENSOR_GYRO)

Input

Profile Priority: 1
| DISPLAY_COLOR

Profilel @ Profile2

Profiled () Profies

Fig. 2. A completed control graph shown in the Flow Designer

By connecting the inputs and outputs of various blocks to-
gether, participants are able to mix and match control surfaces
and controllable objects in new, playful and potentially unfore-
seen ways. For example, the Sphero robot might be connected
to a Hue network light in such a away that the orientation of the
robot controlled the color of the Hue light. Alternatively, the
Sphero might also be used as a flight controller for the Parrot
drone or as a media playback controller for an Apple TV. The
demonstrator supports a variety of interaction scenarios that
can be designed and realized on-the-fly by participants.

Completed control graphs can be sent over the network
from the Flow Designer to the paired Dynamix device for
testing. The AC library running within the Dynamix device
receives incoming control graphs (as XML), parses the con-
figuration, uses the Dynamix instance to install specified plug-
ins, and then sets up the plug-in intercommunication channels
necessary to render the graph. As completed control graphs
contain live data from the environment (e.g., device identifiers),
the underlying plug-ins are able to properly connect with
specified devices. Figure 3 shows a user experimenting with a
deployed control graph by rotating a Sphero device to control
the color of a Hue network light.

Fig. 3.

Connecting a Sphero robot ball to a Hue-based smart lamp.

Finalized smart space designs can be published to the
AFS (or a private repository) together with contextual scoping
tags (e.g., radio beacon or geo-fence data). During runtime,
mobile users are able to discover and try shared designs when
situated within the specified context using only a Dynamix-
based device.

We envisage this type of tooling as useful for new types
of design professionals that will likely emerge as the IoT con-
tinues to expand into everyday environments. Such “ambient
designers” will likely prefer to focus on creating innovative
user experiences rather than solve low-level IoT interoperabil-
ity issues. Accordingly, Ambient Flow lowers the complexity
of smart space orchestration through efficient user guidance
and automated configuration.

REFERENCES

[1] D. Carlson and A. Schrader, “Dynamix: An open plug-and-play context
framework for android,” in Internet of Things (I0T), 2012 3rd Interna-
tional Conference on the, Oct 2012, pp. 151-158.

[2] M. Pagel and D. Carlson, “Ambient control: A mobile framework for
dynamically remixing the internet of things,” in IEEE International
Symposium on a World of Wireless Mobile and Multimedia Networks.
IEEE, 2015, Conference Proceedings.

[3] M. Blackstock and R. Lea, “Iot mashups with the wotkit,” in Inter-
national Conference on the Internet of Things (IoT 2012). IEEE,
Conference Proceedings.

[4] D. Carlson, M. Mogerle, M. Pagel, S. Verma, and D. S. Rosenblum,
“Ambient flow: A visual approach for remixing the internet of things,”
in Proceedings of the 5th International Conference on the Internet of
Things (10T 2015). 1EEE, 2015, Conference Proceedings.

[5] J. Morrison, Flow-based Programming: A New Approach to Application
Development. J.P. Morrison Enterprises, 2010.

[6] F. Oliphant ef al., “Meemoo: Hackable web app framework,” 2012.



