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Abstract—The number of networked ”’smart devices” available
in everyday environments is rapidly increasing; however, most
adopt mutually incompatible networks, protocols, and applica-
tion programming interfaces. In previous work, we introduced
a variety of adaptive middleware techniques that enables a
user’s commodity mobile device (e.g., a smartphone) to serve
as an adaptive gateway between mutually incompatible devices
— providing service adaptation and protocol translation services
through plug-ins that can be installed on-the-fly. In this paper, we
present a complementary set of novel smart space design tools,
which enable non-programmers to visually ”remix” their ambient
environments in new, playful and potentially unforeseen ways
using an intuitive flow-graph model. Visual designs can be sent
over the network to the user’s mobile device, which instantiates
them during runtime. This paper presents a detailed overview
of the approach, introduces our fully functional prototype, and
presents a user study that provides encouraging first results.

I. INTRODUCTION

As the Internet of Things (IoT) rapidly becomes a reality,
a flood of new consumer smart devices is beginning to enter
the market, permeating many environments. We are now able
to easily connect to these devices using a variety of different
network technologies, such as Bluetooth, Bluetooth LE, WI-
FI, Near-Field-Communication (NFC), ANT+, 6LOWPAN and
more. While such capabilities have ostensibly made it easy to
discover and communicate with these new devices, no univer-
sally adopted application-layer protocols or interaction patterns
have yet emerged. As a consequence, the (IoT) is becoming
a highly fragmented landscape of vendor specific protocols,
where seamless smart device interactions across (IoT) system
boundaries is complex, error prone, and increasingly rare.

Although a variety of ”smart gateway” devices (e.g., home
hubs) endeavor to act as a common connection point for
nearby connected devices, these devices must be physically
installed and configured for each target environment, limiting
their accessibility. Moreover, smart gateway implementations
typically limit the supported devices and protocols to those
known a priori. In the rapidly emerging IoT, these limitations
become highly problematic, since the number of required smart
gateway servers will increase rapidly, as will the number
of potentially unknown smart devices — leaving potentially
useful and powerful cross-vendor combinations of smart device
functionalities hidden.

In previous work [1], we described how a commodity
mobile device can be transformed into an adaptive smart
gateway that is carried by the user, providing service adaptation

and protocol translation services through plug-ins that can be
installed on-the-fly. The foundation of this approach, called
Ambient Dynamix [2] (Dynamix), is our plug-and-play mobile
middleware framework that is capable of loading and instan-
tiating a variety of plug-ins into the user’s device at runtime,
in order to provide dynamically extensible context sensing
and remote control services. Related, we also developed the
Ambient Control library (AC Library) for Dynamix, which
aims to unify common control patterns between smart devices,
enabling the ad-hoc discovery, selection and integration of
smart devices in highly heterogeneous environments [3].

To demonstrate the interaction possibilities provided by the
AC Library, we introduced the Tap To Interact workflow [4],
which allows users without coding experience to “wire” smart
devices together by tapping affixed Near Field Communica-
tions (NFC) tags using their Dynamix-enabled device. This
capability facilitates easy, fun and sometimes unexpected ways
to interact with encountered connected devices. Although 7ap
To Interact is useful in small-scale scenarios (e.g., connecting
two or three well-known smart devices), the approach can
become quickly insufficient for configuring larger smart space
scenarios. In particular, Tap To Interact lacks the rich visual
feedback necessary for creating complex smart device orches-
trations; requires that participating smart devices be known
a-priori and labeled with NFC tags; and does not support the
saving or sharing of developed smart space configurations.

Based on these limitations, this paper presents a novel
visual approach for “remixing” ambient environments using a
Web-based toolset that can be accessed from the user’s desktop
computer. This approach, called Ambient Flow, leverages
information from the user’s mobile Dynamix instance to render
discovered connected devices as block diagrams in a Web
canvas that can be “wired” together using an intuitive flow
graph model. Ambient Flow executes completed graphs by
automating the installation of required plug-ins and control
logic into the user’s Dynamix instance during runtime. The
proposed approach is intended to allow non-programmers to
actively discover, connect and share smart space configurations
in a fun and playful manner. As such, it focuses on lowering
the complexity inherent to smart space orchestration through
efficient user guidance and automated configuration.

This paper is structured as follows. Section II provides
background on the Ambient Dynamix framework and the Am-
bient Control library, which form the foundation for this cur-
rent work. Section III introduces the Ambient Flow approach,
including its key design principles, software architecture and



smart space configuration model. Section IV describes our
fully operational prototype system, which is used to validate
the Ambient Flow approach. Section V presents a preliminary
user evaluation that investigates how end-users can utilize the
prototype to configure their environments. Section VI describes
related work. Section VII concludes the paper with a discussion
of our contributions and an outlook on future work.

II. BACKGROUND

The number of networked smart devices available in ev-
eryday environments is rapidly increasing; however, many
current devices adopt mutually incompatible networks, pro-
tocols, and application programming interfaces (APIs). For
example, devices like the Sphero Robotic ball and Parrot AR
Drone helicopter both provide dedicated controller apps, but
remain inherently incompatible. The Sphero supports sensor
data streaming of its inertial measurement unit (IMU) over
a Bluetooth connection, which can be used to determine the
current orientation of the robot using a proprietary API. The
AR Drone supports data connectivity over WiFi and accepts
flight control commands that can be used to remotely pilot
the drone. A grasped Sphero device could theoretically be
used as an intuitive flight controller for the drone (by feeding
its streaming IMU data into the drone’s flight control API);
however, such interactions are not inherently supported by the
devices.

A. Ambient Dynamix

To address the network, protocol and API heterogeneity
challenges introduced above, we developed Ambient Dynamix
(Dynamix for short) [2], a plug-and-play middleware frame-
work that enables mobile apps and Web apps [5] to sense the
user’s context (e.g., location, identity, activity) and perform
fluid smart device interactions through plug-ins that can be
dynamically installed into the user’s Android-based mobile
device (e.g., smartphone or tablet) on-demand. Dynamix runs
as lightweight background service, leveraging the user’s mo-
bile device itself as a sensing, processing and communications
platform. Dynamix comes with a growing collection of ready-
made plug-ins and provides open software development Kkits
(SDKs) and a scalable repository architecture, which enable
3rd party developers to quickly create and share new plug-
in types with the community. An overview of the Dynamix
Framework is shown in Figure 1.

As shown above, a Dynamix Service is situated between a
device’s local hardware and (potentially many) Dynamix apps.
Apps communicate with a Dynamix Service through easy-to-
use application programming interfaces (APIs), including a
Facade API (for requesting and controlling context support)
and an Event API (for receiving framework notifications and
context events). Dynamix automatically discovers, downloads
and installs the plug-ins needed for a given sensing or control
task. Plug-ins can be manually installed into a Dynamix Ser-
vice or deployed automatically in the background in response
to app requests (from a configurable set of public or private
repositories). Plug-ins are automatically deployed along with
all their dependencies (e.g., linked code libraries, resources,
assets), which allows Dynamix-based apps to easily install
complex context support using only a few lines of code. Plug-
ins are packaged and deployed as OSGi bundles, which are
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Fig. 1. Overview of the Dynamix Framework

Java Archive (JAR) files with additional metadata. When the
user changes environments, new or updated plug-ins can be
deployed to the device at runtime, without the need to restart
the framework.

Dynamix includes comprehensive inter-plug-in commu-
nication capabilities that enables plug-ins running within a
Dynamix instance to send messages to each other and consume
services provided by other plug-ins (e.g., register for context
sensing or device control services). This opens up the possibil-
ity of dynamically installing service adaptation and/or protocol
translation plug-ins, which enables a Dynamix device to serve
as a mediator between mutually incompatible smart devices
situated in the user’s environment. These capabilities provide
the foundation of the Ambient Control approach described
next.

B. The Ambient Control library

To enable dynamic “remixing” of encountered IoT re-
sources, we developed the Ambient Control (AC) library, which
aims to unify common control patterns between smart devices,
enabling the ad-hoc discovery, selection and integration of
smart devices in highly heterogeneous environments. The AC
library loads into a Dynamix instance and enables the user’s
mobile device to serve as a mediator between mutually in-
compatible smart devices. The AC library provides extensible
mechanisms for describing, discovering, and combining the
command messages and associated data provided by a wide
variety of smart devices through Dynamix plug-ins that can
be loaded at runtime. This capability facilitates easy, fun and
sometimes unexpected ways to interact with connected devices.

To enable a smart device to be automatically wired by
the AC library, a Dynamix developer first creates a plug-in
that exposes the device’s features using standardized Dynamix
commands. Next, the developer publishes a plug-in profile that
describes the possible commands that the underlying device
can produce and consume. (Note that it is also possible to
specify the minimum set of control commands needed to
control a device, and which controls are optional.) The AC
library supports 1-to-n connections that involve 1 receiver
and any number of controllers. We call such a configuration



a control graph, since it consists of nodes (plug-ins) and
directed control edges between nodes, over which certain
types of controls are exchanged. Multiple control graphs can
operate simultaneously within a single Dynamix instance. The
AC Library includes a Smart Wiring feature that optimally
matches the inputs and outputs of the plug-ins in a given
control graph according to priority values. The AC Library
coordinates requested control graphs by managing required
plug-in installations via Dynamix, handling the setup hand-
shake process between plug-ins and managing full duplex
communication channels between controllers and a receiver.
Detailed information about this approach can be found in [3].

A single Dynamix instance equipped with the AC library
can run multiple control graphs simultaneously in order to
support complex interactions among multiple devices. We call
such a set of one or more Control Graphs a “control scenario”.
Figure 2 shows an example Control Graph configuration con-
necting a Sphero robot as a controller to a Parrot arDrone
receiver. This configuration also includes a translator that
mediates between incompatible control message requirements.
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Fig. 2. Sample Control Graph configuration

In order to facilitate interactions between smart objects,
the AC library defines a set of control commands that define
well-known interaction semantics and associated data. These
commands are defined as string constants with values like
“MOVEMENT_FORWARD” or “PLAYBACK_PLAY”, and
are used to identify the types of command messages that
may be exchanged between linked plug-ins. Each command
message may hold additional parameters, depending on the
type of command (e.g., a reference to the video file to be
played in the case of a “DISPLAY_VIDEO” message). We
also defined several sensor message types that can be used
to transmit raw sensor data from one plug-in to another in
a standardized way. These messages are also identified by
string constants like “SENSOR_IMU” (e.g., for data from an
orientation sensor). A message of this type would contain
the sensed orientation as pitch, yaw and roll values within
standardized ranges. It is the plug-in developer’s responsibility
to transform the raw values delivered by a plug-in into the
range defined by the AC library documentation. For example,
for “SENSOR_IMU” control commands, we define that the
pitch value must be in the interval [-180,180], with O in a
horizontal normal orientation and -180 if horizontal but upside
down.

Control commands can be associated with a Dynamix
plug-in through a plug-in control profile that describes the

commands a given Dynamix plug-in can emit (output) and
consume (input), along with the associated data types that can
be exchanged. To reflect different sets of commands that can
be used to control a plug-in, it is possible to create several
input profiles per description with different priorities. Plug-
in control profiles are stored inside a Dynamix web service,
which offers a REST interface for accessing the profiles based
on a plug-in’s id, as well as the ability to perform queries
for plug-ins that support or require certain command types.
This allows developers to integrate new plug-ins with the AC
library any time without recompiling or restarting the Dynamix
service, by leveraging the dynamic download and installation
capabilities of Dynamix [2].

III. AMBIENT FLOW

The approaches described in the last section are able
to solve many of the interoperability challenges inherent to
heterogeneous smart environments. Through a provided smart
space configuration control graph, Ambient Control is able
to automatically configures its Dynamix instance to serve as
a smart gateway between the specified networked devices.
Although manual control graph creation works well in experi-
mental scenarios, configuring real-world environments requires
addressing multiple interaction patterns and a larger number
of smart devices, which can quickly become cumbersome
and complex when writing control graph configurations by
hand. In this section, we explore how the creation of such
configurations might be simplified, according to the 3 design
principles outlined below.

A. Key design principles

1) Simplicity: Users should be shielded of the low-level
technologies underlying the IoT, such as communication
protocols, data-types, and idiosyncratic implementations
of service interfaces. Users should be free to easily mix
and match rich sources of contextual data and smart
device capabilities to create smart space scenarios that
fits their needs.

2) Immediacy: Users should be guided and supported in the
creation of working IoT scenarios, with an emphasis on
immediate feedback and minimizing frustrating errors.
It should be possible to immediately test new scenario
configurations and obtain relevant real world feedback on
their viability.

3) Playfulness: It should be possible for users to explore
new and creative interaction scenarios in a playful way
that encourages experimentation with IoT resources.

B. Architecture

Based on the design principles outlined above, we devised
a smart space configuration approach, called Ambient Flow,
which enables non-programmers to easily create and adjust
control graphs visually, and then load them into a paired
Dynamix-based device for realization. Control graphs can be
loaded into a Dynamix instance either from the network or
from other sources (e.g., from another Dynamix plug-in or
app). The aim of Ambient Flow is to simplify the configuration
and orchestration of smart spaces, while encouraging users to
explore possibilities in their environments in order to come up
with their own creative use-cases. The next sections described



the Ambient Flow approach by addressing each of the key
usability principles outlined above.

To address the simplicity and immediacy principles, we
explored representing IoT scenarios using a flow-based pro-
gramming model. Flow-based programing [6] is a visualization
technique that allows users without coding experience to un-
derstand, create and alter programs by manipulating graphical
blocks that represent program components or functionalities.
These blocks expose available parameters and interaction
possibilities, such as inputs and outputs. Completed control
graphs can be collapsed into a single subgraph to allow for
a more tidy representation that can be included as a single
block in more complex scenarios (e.g., configurations that
combine components comprised of large numbers of low-level
input/output connections). Global inputs and outputs for a
complete subgraph can be assigned, which enables interactions
between graphs or groups of smart objects. By configuring
individual blocks, and connecting the inputs and outputs of
various blocks together, a user can create a fully functional
program that solves a given task.

We applied the flow-based programming approach to the
IoT interaction capabilities provided by Ambient Control. To-
wards this end, we created a Web-based “Flow Designer” that
renders smart devices and their available inputs and outputs
as graphical elements within a Web-based canvas. Using the
Flow Designer, users can drag smart device blocks to the
canvas and then connect them together to create complex
graphs that represent the intended configurations of a smart
space. Completed configurations can be deployed directly to a
Dynamix-based device or shared with other users through an
online repository called the Ambient Flow Server. An overview
of the Ambient Flow network architecture is shown in Figure
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Fig. 4. Ambient Flow network architecture

To address the principle of playfulness, the Flow De-
signer’s interface provides constant feedback during the cre-
ation process by assisting the user when selecting possible
connection points between devices. For example, if the user
begins dragging an output of a smart device block, only
compatible inputs on potential target smart devices are shown
as valid (incompatible inputs are grayed out). If the user
attempts to connect incompatible outputs and inputs, required
translators are automatically inserted if available, without the

need for additional user interaction. This prevents the user from
configuring faulty interaction patterns that wouldn’t work in
reality.

Figure 3 depicts a completed control graph connecting a
Sphero robot ball and a Parrot ARDrone within the Flow
Designer. As the Sphero is able to produce orientation data
from its inertial measurement unit (SENSOR_IMU), this out-
put can be directly connected to the IMU input of the drone,
controlling the drone’s flight direction. The second input
required to control the drone is a command telling it to take off
or land (MOVEMENT_START_STOP). In this example, this
command is provided by connecting the collision sensor of the
Sphero in the form of toggle events, which are translated into
the necessary MOVEMENT_START_STOP commands using
a translator, as shown in Figure 3. Through this configuration
the user can start or land the drone by tapping the Sphero
ball and thus setting of the collision sensor. Once flying, the
Ambient Control plug-ins match the drone’s orientation to the
orientation of the sphere in the users hand, creating an intuitive
flight control system based on the user’s hand gestures.

To address the immediacy challenge, the Flow Designer
running in a desktop browser can be remotely paired with
the user’s Dynamix instance running on a smart phone. Each
Dynamix instance exposes its APIs using an inbuilt web
server that provides a fully featured REST interface to remote
devices. This connection allows the Flow Designer to scan the
environment for available smart devices and quickly deploy
completed control graphs for testing.

To support remote pairing, Dynamix offers an intuitive
service called ”Scan to Interact”, which uses its barcode plug-
in to read pairing information from a 2D barcode that can be
generated and displayed in the Flow Designer’s interface. The
Dynamix device is used to scan the barcode and read the pair-
ing information. This information includes metadata including
the Web app’s name, a pairing code, and a shared secret that
is used to sign and verify API calls. These credentials are
generated on-the-fly by the Flow Designer and are only shared
optically with Dynamix. Once the pairing barcode is read by
Dynamix, it publishes its server IP address and port using a
public Dynamix Web service. The Flow Designer monitors the
pairing Web service, and automatically binds to the Dynamix
device once the pairing code and IP address are published.
Details of this remote pairing approach will be presented in
an upcoming paper.

Once the Dynamix instance on the phone is bound with the
Ambient Flow Web interface, the control graph can be sent
to the AC Library running within the Dynamix instance on
the smartphone. The AC Library parses the incoming control
graph, and then instructs its Dynamix instance to install the
plug-ins required to support the smart devices involved in
the configuration. Once plug-in support is available, the AC
Library will then initialize messaging between the various
plug-ins as a means of realizing the control graph.

IV. PROTOTYPE IMPLEMENTATION

To validate the Ambient Flow approach presented in the
last section, we created a fully operational prototype that
includes the Flow Designer, Ambient Flow Server (AFS)
and the aforementioned Dynamix remote pairing capability



=/ [ debug: Dataflow graph ec %

€« - ¢ [/ 050/ dataflow

ToggleSensorToStantStopTranslator

= | S|

e

I
?
Quickstart |

Input

Output

spheronative

| SENSOR_TOGGLE

Output

Prafile Priority: 1
| SENSCR_IMU
Optional Input
| DisPLAY_cOLOR
| swireH

Profilel ® Profile2 L Profile3

MOVEMENT_START_STOP

— —

ardrone

Input Output

Profile Priority: 1
| MOVEMENT_START_STOP
| sENSOR_IMU

Optional Input
| MOVEMENT_DOWN

Accelerometer (SENSOR_ACC)
Pitch Yaw Roll (SENSOR_IMU)
Gyroscope [SENSOR_GYRO)

| MOVEMENT_UP

Profilel ® profile2 L Profile3

Fig. 3.

(see Figure 4). The AFS hosts a database that contains the
available Ambient Control control profiles, and the various
control graphs published by users. Recall that control profiles
provide a generic way of describing the high-level capabilities
provided by smart devices (e.g., inputs, outputs, and associated
data types), as provided by a Dynamix plug-ins. The AFS
also hosts the Flow Designer, which is implemented as an
HTML/CSS/JavaScript framework that executes within a Web
browser.

The Flow Designer was implemented by extending the
open-source Meemoo framework [7], which provides high-
level visual programming features such as block rendering,
wiring support, subgraphs, etc. The Flow Designer utilizes the
REST interface of the AFS to obtain the metadata of available
control profiles. These are rendered as smart device blocks that
can be placed on the canvas. The input and output data-types
for each smart device block are extracted from the retrieved
control profile metadata. Blocks can be placed on the canvas
by clicking the ”Add Devices” button in the Flow Designer’s
interface, which displays both available and unavailable (i.e.,
offline or not present) devices in a list. Clicking a device in
the list places it on the canvas, where it can be connected with
other smart devices.

The Flow Designer (running on a desktop Web browser)
supports remote pairing with a remote Dynamix instance
(running on an Android mobile device) when situated in the
same local network. The pairing process operates using the pre-
viously mentioned out-of-band credential exchange (a pairing
token shared optically via a barcode). Once the Flow Designer
is paired with a Dynamix instance, the Flow Designer’s canvas
can be populated with smart device blocks that contain “live
data” from the user’s environment, such as available devices
with corresponding id information and state. Connections
between blocks are made by dragging “wires” between de-
vice outputs and inputs. As described earlier, the interface
guides users when creating connections by graying out invalid
targets (see Figure 5), and by adding translators as required.
Completed control graphs can be sent over the network from
the Flow Designer to the paired Dynamix device for testing.
The Ambient Control library running within the Dynamix
device receives incoming control graphs (as XML), parses the
configuration, uses the Dynamix instance to install specified
plug-ins, and then sets up the plug-in intercommunication

The Flow Designer displaying a simple configuration that enables a Sphero robot to be used as a controller for a Parrot ARDrone
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channels necessary to render the graph. As completed control
graphs contain live data from the environment, the underlying
plug-ins are able to properly connect with specified devices
and provide requested protocol translation services. During
runtime, completed designs can be utilized by Dynamix-based
devices alone, without requiring the Ambient Flow tooling.

In previous work, we demonstrated that complex resources,
such as support libraries, native code, and protocol stacks, can
be successfully bundled and deployed within Dynamix plug-
ins [8]. For the Ambient Flow prototype presented in this
section, we created several Dynamix plug-ins that use these
capabilities to support protocol translation (e.g., via runtime-
deployed native protocol libraries) and dynamic integration
via Ambient Control. Towards this end, each plug-in provides
high-level descriptions of their capabilities (i.e., control pro-
files), which enables automatic “wiring” of their control logic
to each other according to the AC Library running within the
Dynamix instance. The plug-ins developed for this prototype
implementation support network-based lighting (Phillips Hue
and LIFX); the AR Drone Helicopter; the Sphero Robotic
Ball; the Myo Armband; various Wemo switches and motion
detectors; and networked media players, such as Apple TVs
and UPnP players. Additional plug-ins are in development.

V. USER STUDY

To validate the usability of the initial Ambient Flow
prototype, we conducted a preliminary user study with a total



of 10 participants (all were non-programmers). The user study
included 6 male and 4 female participates, ranging in age from
16 to 50 years old. The study was conducted to investigate
how well users without programming experience were able
to create IoT interaction scenarios using the Flow Designer.
During the beginning of the study, users were provided with a
short, Web-based tutorial that provided a guided tour through
the Ambient Flow web interface. The tutorial instructed users
how to perform basic tasks using the Flow Designer, such as
placing and connecting smart-device blocks. The tutorial took
less than 5 minutes to complete.

After finishing the tutorial, users were then given a smart
space configuration task that required them to create and verify
a new control graph using the Flow Designer. The task required
that users connect a Sphero robot to a Hue network light
in such a away that the orientation of the robot controlled
the color of the Hue light. Users were instructed to use the
Flow Designer to add appropriate block components to the
canvas, connect the blocks to achieve the specified task, and
then deploy the completed graph to a paired Dynamix-based
smartphone for testing.

Although the Sphero’s role as a lighting controller is not
inherently obvious, the Flow Designer’s user guidance system
helped participants make this type of unexpected connection
by highlighting available wiring points and adding translator
support as needed. As shown in Figure 6, by connecting
the Sphero’s SENSOR_IMU output data pin to the DIS-
PLAY_COLOR input pin on the Hue light, the Flow Designer
automatically installs a translator that maps orientation data to
color values, allowing users to creatively try new interaction
possibilities.

HeadingToColorTranslater

Input | Output

Output

Accelerometer (SENSOR_ACC) hueplugin

ENSOR_TOGGLE)
Pitch Yaw Roll (SENSOR_IMU)

Collisi

Input

Profile Priority: 1
| DISPLAY_COLOR

Gyroscope (SENSOR_GYRO)

Profilel ® Profile2

Profiie4 () Profiles
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Users were also instructed to utilize the previously de-
scribed Dynamix remote pairing feature to deploy and test their
control graph using real world hardware. To accomplish this,
users clicked the ”Connect to Dynamix” button in the Flow
Designer, which displayed a barcode that could be scanned by
the user’s Dynamix-based device to complete the pairing pro-
cess. After pairing, the Flow Designer automatically deployed
the completed control graph to the Ambient Control library
running within the Dynamix instance on the user’s mobile
device. As previously discussed, the AC Library automatically
parses incoming control graphs, uses its Dynamix instance
to install and instantiate requested plug-ins, sets up control
messaging, and manages resulting data flows during runtime.
As shown in Figure 7, users were able to test deployed control
graphs by rotating the Sphero device to control the color of
the Hue light.

Fig. 7. A user study participant completes the task of connecting a Sphero
robot ball to a Hue-based smart lamp.

The results of this preliminary user study are encouraging.
All users were able to successfully create and verify the
specified control graph task on their own, including users block
placement, wiring, remote Dynamix pairing, graph deployment
and testing of the deployed graph using the provided hardware.
As shown in Figure 8, users required on average 277 seconds
of training (via the tutorial) and then completed the task in
approximately 122 seconds.
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Fig. 8. Time taken by study participants to complete the tutorial and the

task. The values are measured in seconds.

Many users requested the possibility to download pre-
configured control graphs to use in their own configurations.
However, when asked if they were interested in the ability
to upload and share their own graphs to a community portal,
most users were (surprisingly) not motivated to do so. This
result indicates that a database of high quality, ready-made
graph templates may be desirable, if provided by motivated
developers and skilled enthusiasts. We are currently exploring
ways of enabling better control graph publishing, discovery
and integration, which will allow novice users to quickly adapt
existing graphs to their particular environment through a few
simple configuration steps.

After users completed the study task, they were inter-
viewed about their experience with Ambient Flow using the
System Usability Scale (SUS) questionnaire [9]. The SUS
questionnaire provides a structured rating system for judging
the usability of the task according to the standardized questions
shown in Table I. The resulting scores represent the overall
usability of the system (ranging from 0-100). A higher score
represents better usability in this context. In addition, users
were timed while taking the tutorial and completing the study



task. Finally, users were asked several open ended questions
about their impressions of the system and possible features
they missed.

TABLE 1. SYSTEM USABILITY SCALE (SUS) QUESTIONS [9]
Q1 I think that I would like to use this system frequently.

Q2 I found the system unnecessarily complex.

Q3 I thought the system was easy to use.

Q4 I think that I would need the support of a technical person to be able
to use this system.

Q5 I found the various functions in this system were well integrated.

Q6 I thought there was too much inconsistency in this system.

Q7 I would imagine that most people would learn to use this system very
quickly.

Q8 I found the system very cumbersome to use.

Q9 I felt very confident using the system.
Q 10 | T needed to learn a lot of things before I could get going with this
system.

Figure 8 shows the mean answers to the SUS questions
that users answered after the study task. The final results
summed to a total SUS score of 81, which indicates an overall
positive user experience. This was also reflected in the answers
of the additional, open-ended interview questions related to
their experiences and suggestions. In these answers, most users
described how they liked the simplicity of the visual interface,
and how they had fun drawing lines that connected functional
blocks that could be then realized in the real world.
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Fig. 9. Results of the Ambient Flow user study. Answer values range from
1: “Don’t agree” to 5: “Strongly agree”. The questions asked are displayed in
Table 1.

VI. RELATED WORK

There are several areas of related work that have served as
inspiration and motivation for our research into orchestrating
seamless interactions across heterogeneous IoT environments.
In terms of promoting device interoperability, intermediate
nodes, known as smart gateways [10], have been proposed as
a method of encapsulating proprietary devices behind Web-
based APIs. A smart gateway communicates directly with
devices using appropriate service protocols and network access
technologies (e.g., Bluetooth or Zigbee) and simultaneously
connects to the Internet using TCP/IP, providing an in-built
Web server to clients and handling data forwarding and pro-
tocol translation between Web agents and non-Web devices.
As smart gateways are currently designed to solve specific
network access and protocol interoperation challenges, they
typically contain a static set of capabilities and cannot be
extended easily at runtime [11]. Moreover, smart gateways
are difficult to deploy at scale, since they must be physically
installed and configured for each target network.

Related, protocol interoperation network architectures have
also been developed, including ReMMoC [12]; INDISS [13];
MSDA [14]; and uMiddle [15]. Unfortunately, these ap-
proaches cannot adequately support many IoT scenarios,
where wide-area deployments are critical [14]. For example,
infrastructure-based approaches like INDISS and uMiddle can-
not be deployed across independently administrated networks
since administrative access is required. Although network
overlay techniques such as MSDA do support wide-area de-
ployment, they also require widespread adoption to be useful
(i.e., each target network must have at least one participating
MSDA node). ReMMoC can be used without widely deployed
infrastructure; however, participating network services must
be re-architected to support its Web-service discovery model.
More recently, SeDiM [16] has been proposed as a client-
centric interoperation solution, which provides multi-protocol
translation support. While closer in spirit to our approach,
SeDiM does not support the dynamic integration of new
protocol support at runtime; rather, a fixed set of protocol
modules can be switched on or off as needed.

Several projects have explored techniques for enabling
smart space orchestration using visual programming models.
Some of these systems (e.g., [17]-[19]) allow users to perform
orchestration through user interfaces that expose a set of
predefined rules. While such techniques are useful in scenarios
that can be decomposed into an “if this then that” control
structure, they are not ideal for handling streams of sensor
data that directly affect actuators, such as an orientation sensor
controlling the direction of a robotic device. In these cases, our
flow based approach is more flexible, as it covers “if this then
that” scenarios as well as stream-based actuator control in a
unified manner.

Finally, other visual approaches assume that every smart
device will (and can) be represented by a unified specification
schema, like the Resource Description Framework (RDF) in
the case of [20] and [21]. We acknowledge that it is generally
a good idea to use existing standards to describe smart device
services, but we are hesitant about the choice of RDF, which
tends to be become bloated and cumbersome when used
to describe real-time data such as sensor streams. Semantic
approaches will likely play an important role in large-scale
orchestration scenarios, such as city-wide service coordination.
In contrast, our approach focuses on orchestrating spontaneous
interactions with potentially unknown smart devices situated in
the user’s environment, which may be encountered at runtime.
As such, our approach can be understood as complementary
to current orchestration techniques, as well as others.

VII. CONCLUSIONS AND OUTLOOK

In this work, we presented a novel set of smart space
design tools that enable non-programmers to visually “remix”
ambient environments in new, playful and potentially un-
foreseen ways. The approach, called Ambient Flow, builds
on our previously presented Ambient Dynamix and Ambient
Control technologies, which transform a user’s commodity
mobile device into adaptive smart gateway that provide service
adaptation and protocol translation services through plug-ins
that can be installed on-the-fly. During design time, Ambient
Flow tooling can be accessed from a desktop computer (or
tablet) through a conventional Web browser. Live information



from a remotely paired Dynamix instance is used to render
discovered connected devices as block diagrams that can
be “wired” together using an intuitive flow graph model.
Completed control graphs can be sent from the browser back
over the network to the Dynamix-based device, where they
are setup by Ambient Control in real time for testing and
debugging. Finalized smart space designs can be published
to a public online repository (or private local server) together
with contextual scoping tags (e.g., radio beacon or geo-fence
data). During runtime, mobile users to discover and use shared
designs when situated within the specified context using only
a Dynamix-based device.

We envisage this type of tooling as useful for new types
of design professionals that will likely emerge as the IoT con-
tinues to expand into everyday environments. Such “ambient
designers” will likely prefer to focus on creating innovative
user experiences rather than solve low-level IoT interoperabil-
ity issues. Accordingly, Ambient Flow lowers the complexity
of smart space orchestration through efficient user guidance
and automated configuration.

In terms of evaluation, we produced a fully operational
prototype system and conducted a preliminary user study. In
the study, 10 participants utilized the Ambient Flow prototype
to visually connect a Sphero robot to a Hue network light
in such a away that the orientation of the robot controlled
the color of the Hue light. Users were also asked to deploy
the completed configuration to a remotely paired Dynamix
instance for realization. We found that all users were able to
successfully complete the study task of creating a new control
graph on their own, which in itself is a very encouraging result.
The final System Usability Scale result for all participants was
81, which indicates an overall positive user experience.

We are focusing on several areas of future work. We are
continuing to wrap smart device functionality within open-
source Dynamix plug-ins that adhere to the Ambient Control
methodology. We feel that a large pool of plug-ins is necessary
for exploring the real-world implications of our architecture.
We are also developing more robust remote pairing capabilities
for Dynamix, including support for encrypted remote com-
munications. Finally, we are investigating how control graphs
can be published publicly and loaded automatically based on
contextual triggering in large-scale IoT environments.
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